Mitochondrial dysfunction is the focus of quaternary ammonium surfactant toxicity to mammalian epithelial cells.

نویسندگان

  • Ângela S Inácio
  • Gabriel N Costa
  • Neuza S Domingues
  • Maria S Santos
  • António J M Moreno
  • Winchil L C Vaz
  • Otília V Vieira
چکیده

Surfactants have long been known to have microbicidal action and have been extensively used as antiseptics and disinfectants for a variety of general hygiene and clinical purposes. Among surfactants, quaternary ammonium compounds (QAC) are known to be the most useful antiseptics and disinfectants. However, our previous toxicological studies showed that QAC are also the most toxic surfactants for mammalian cells. An understanding of the mechanisms that underlie QAC toxicity is a crucial first step in their rational use and in the design and development of more effective and safer molecules. We show that QAC-induced toxicity is mediated primarily through mitochondrial dysfunction in mammalian columnar epithelial cell cultures in vitro. Toxic effects begin at sublethal concentrations and are characterized by mitochondrial fragmentation accompanied by decreased cellular energy charge. At very low concentrations, several QAC act on mitochondrial bioenergetics through a common mechanism of action, primarily by inhibiting mitochondrial respiration initiated at complex I and, to a lesser extent, by slowing down coupled ADP phosphorylation. The result is a reduction of cellular energy charge which, when reduced below 50% of its original value, induces apoptosis. The lethal effects are shown to be primarily a result of this process. At higher doses (closer to the critical micellar concentration), QAC induce the complete breakdown of cellular energy charge and necrotic cell death.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protective Role of Apigenin Against Aβ 25-35 Toxicity Via Inhibition of Mitochondrial Cytochrome c Release

Introduction: Cognitive dysfunction is the most common problem of patients with Alzheimer disease (AD). The pathological mechanism of cognitive impairment in AD may contribute to neuronal loss, synaptic dysfunction, and alteration in neurotransmitters receptors. Mitochondrial synapses dysfunction due to the accumulation of amyloid beta (Aβ) is one of the earliest pathological features of AD. Th...

متن کامل

Evaluation of the Toxicity Effects of Silk Fibroin on Isolated Fibroblast and Huvec Cells

Emerging line research showed that silk nanoparticles (NPs) have toxicity on the fibroblastand Huvec cells without any toxicity recognized mechanisms. Recently, it suggested peripheralarterial disease confounds almost eight million Americans. Also, due to the main effect offibroblast in a production of extracellular matrix (ECM), adhesive molecules, glycoproteinsand various cytokines, it decide...

متن کامل

Evaluation of the Toxicity Effects of Silk Fibroin on Isolated Fibroblast and Huvec Cells

Emerging line research showed that silk nanoparticles (NPs) have toxicity on the fibroblastand Huvec cells without any toxicity recognized mechanisms. Recently, it suggested peripheralarterial disease confounds almost eight million Americans. Also, due to the main effect offibroblast in a production of extracellular matrix (ECM), adhesive molecules, glycoproteinsand various cytokines, it decide...

متن کامل

Transfection of Antisense Oligonucleotides Mediated by Cationic Vesicles Based on Non-Ionic Surfactant and Polycations Bearing Quaternary Ammonium Moieties

Three different ionene polymers with varying quaternary ammonium moieties were used as a proof of concept for the formulation of antisense oligonucleotides, which are capable of inhibiting Renilla luciferase messenger ribonucleic acid (mRNA). Cationic vesicles, consisting of cationic polymer, antisense oligonucleotide (Luc) and non-ionic surfactant polysorbate 80, were investigated regarding th...

متن کامل

Cytotoxicity of Silver Nanoparticles on Human Gingival Epithelial Cells: An In-Vitro Study

  Objective: Nanosilver has numerous applications in medicine due to its potent antibacterial activity. However, data regarding the bio-safety of its effective concentrations is scarce. This study aims to assess the toxicity of silver nanoparticles on human gingival epithelial cells under in-vitro conditions.   Methods: This in vitro study evaluated the toxic effects of filtered and unfiltered ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Antimicrobial agents and chemotherapy

دوره 57 6  شماره 

صفحات  -

تاریخ انتشار 2013